罗素悖论的数学表达(78句精选句子)
罗素悖论的数学表达
1、一个人通过时光机器回到了过去,在他祖母遇到祖父之前杀掉了他的祖父。这就意味着他父亲不会出生,他也不会出生,那么,他也不可能回到过去杀掉自己祖父,那他祖父和祖母还是会相遇,他也一样会出生,他还是能回到过去杀了自己祖父。
2、在朴素的集合论中有这样一个假设:对于任何一个性质,满足该性质的所有元素,可以组成一个集合。
3、德国逻辑学家弗雷格(Frege)曾在自己的著作中写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成的时候却发现所干的工作的基础都崩溃了。”作为逻辑结构,数学已经处于一种悲惨的境地,数学家们以向往的心情回顾这些矛盾被认识以前的美好时代。(Kline,1972)(罗素悖论的数学表达)。
4、一个关于数字的无限聚集,比如自然数N=5……应该也是一个集合。
5、伯特兰·罗素(BertrandRussell,1872-1970),英国哲学家、数学家、逻辑学家、历史学家、文学家,他与怀特海合著的《数学原理》(ThePrinciplesofMathematics,1903)一书对哲学、数学和数理逻辑有着巨大的影响,使得他在学术上赢得了极其崇高的地位和荣誉。
6、可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?
7、罗素悖论中有许多例子,其中一个很通俗也很有名的例子就是“理发师悖论”:某乡村有一位理发师,有一天他宣布:只给不自己刮胡子的人刮胡子。那么就产生了一个问题:理发师究竟给不给自己刮胡子?如果他给自己刮胡子,他就是自己刮胡子的人,按照他的原则,他又不该给自己刮胡子;如果他不给自己刮胡子,那么他就是不自己刮胡子的人,按照他的原则,他又应该给自己刮胡子。这就产生了矛盾。
8、https://www.businessinsider.com/how-russells-paradox-changed-set-theory-2013-11
9、那么,如何解决罗素悖论呢?很简单,对于“R是否属于R”此无定义处进行重新定义,属于不属于都可以,或者说此处没有意义也可以,看哪种定义比较适用。数学家构造的理论出现矛盾了,就像人们讲话出现了矛盾了一样,解决的方法很简单:“对不起,我没有注意到这里有矛盾,我重新说明一下,此处应该是如此如此……”
10、图片来源:goodillustration.com
11、从崇尚理性的文艺复兴时期起,如笛卡儿、莱布尼茨等都想创造一个理论解决一切问题。莱布尼茨甚至设想把逻辑学用数学符号表示,以后每逢争论,拿支笔一算即见分晓,其思想对符号逻辑的建立起了很大作用,但因为太超前了没能完成夙愿。
12、2000多年以来,人类一直没有弄清楚无穷的概念。比如全体正整数4…和全体正偶数8…,都是无穷多个,那么它们谁更多呢?
13、了解了这个理发师的困惑,这不就是外国版的“自相矛盾”吗?其实,这个“理发师悖论”很容易解决,只需要修改一下理发师的规矩,将他自己排除在规矩之外。然而,罗素悖论是由集合论的基本原理严格推导得来,就不是那么容易解决的了。
14、作者AndyKiersz试图展示,罗素悖论是由于“朴素集合论”(naivesettheory)对“集合”的模糊的、过于开放的定义所导致的;“现代公理化集合论”(modernaxiomaticsettheory),通过设定诸种限制,比如摒除“自含集合”(self-containingsets),则可以有效避免罗素悖论。
15、即A∈A;A要么不是自身的元素,即A∉A。根据康托尔集合论的概括原则,可将所有不是自身元素的集合构成一个集合S即S1={x:x∉x}。
16、有时候,数学的问题,可以在数学之外得到解决。
17、上文,我们已经将平面中的一条线段,考虑为一个集合。
18、这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。
19、再复杂点,我们还希望考虑“诸多集合的聚集”(collectionsofsets)。
20、加利福利亚州也不是自然数,所以我们也会把它扔进集合。
21、小说往往能浮现出现实的影子,事实上,科学研究一直在不断地经历各种理论危机。人类科学史的发展,就是基础理论一次次崩塌、再重建的过程。
22、作者介绍:杨浩,新东方智慧学堂授课老师,北大学士。全国高中数学联赛一等奖,高中物理竞赛一等奖,获得北京大学自主招生60分降分。
23、如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。
24、简而言之,这几位数学家的办法并不是“解决”,而是“避开”。他们通过各种手段,把所有涉及到罗素悖论的情况,都排除在外了。
25、哥德尔不完全性定理一举粉碎了数学家两千年来的信念。他告诉我们,真与可证是两个概念。可证的一定是真的,但真的不一定可证。某种意义上,悖论的阴影将永远伴随着我们。无怪乎大数学家外尔发出这样的感叹:“上帝是存在的,因为数学无疑是相容的;魔鬼也是存在的,因为我们不能证明这种相容性。”
26、 有一天,萨维尔村的理发师挂出一块招牌,上面写着:“我只给村里所有那些不给自己理发的人理发。”村民就问他:“你给不给自己理发?”
27、 如果认为这句话是真话,按照句子内容来看,这就是句假话;相反,认为它是假话,由于它说自己说的是一句假话,那这就变成真话了。
28、贝克莱悖论:无穷小量究竟是否为“0”?就无穷小量在当时实际应用而言,它必须既是0,又不是0。但从形式逻辑而言,这无疑是一个矛盾。
29、什么是集合呢?所谓集合,是由某些确定的元素构成的整体。例如:
30、所谓的发现观,就是数学理论本来就在那里,就像是客观真理或者上帝旨意,而数学家发现了它。所谓的发明观,就是数学理论本来是没有的,数学家发明了它构造了它甚至可以改变它。
31、集合论是颠覆了很多前人的想法,因而很难为人所接受。比如权威克罗内克就曾攻击康托尔的理论长达十年以上,甚至康托尔自己也发现集合论中其实存在着漏洞无法解决,以至于一度精神崩溃,最终在精神病院逝世。
32、M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!
33、维特根斯坦反复强调:“数学家不是发现者,而是发明者。”,又说“数学家一直在发明新的描述形式。有的人受实际需要的刺激,另一些人出自审美需要,还有些人以其他种种方式。”
34、在一个村子里有一位理发师,这位理发师声称:“给而且只给那些不给自己理发的人理发”。现在问理发师是否要给自己理发。如果理发师不给自己理发,那么根据定义,他要给自己理发;如果理发师给自己理发,那么根据定义,他不能给自己理发。这就是著名的“理发师悖论”。
35、策梅洛(Zermelo)、弗伦克尔(Fraenkel)、冯·诺伊曼(vonNeumann)等人提出了一系列公理对集合的构造加以限制,从而排除了罗素悖论中集合的存在。
36、这一理论使数学基础研究发生了划时代的变化,更是现代逻辑史上很重要的一座里程碑。该定理与塔尔斯基的形式语言的真理论,图灵机和判定问题,被赞誉为现代逻辑科学在哲学方面的三大成果。
37、 所以不管强盗怎么做,都与他的题目相违背,反而把自己难住了。
38、尽管有这些限制,现代集合论的诸种公理,仍然足够灵活,结合形式逻辑的规则,它们基本上为整个现代数学提供了坚实的基础。
39、事实上,基于对“集合”的朴素定义,我们自然会考虑一个“所有事物的集合”(asetofeverything),或者一个“所有集合的集合”(asetofallsets)。(二者都是自含集合。)
40、在世纪之交,卓越的分析哲学家伯特兰·罗素(BertrandRussell),发现这一概念(即,自含集合)中的一个严重问题,被称为“罗素悖论”。
41、科幻电影《回到未来》系列。图片来源:AmazonUK
42、1900年,国际数学家大会上,法国著名数学家庞加莱宣称:“……借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”。可是,好景不长,1903年,一个震惊数学界的消息传出:集合论是有漏洞的!
43、由于这几个悖论迟迟得不到解决,康托尔承受着巨大的精神压力,最终精神失常,死在了哈勒大学精神病院里。时至今日,第三次数学危机依然没有完美解决。数学家们只是通过人为添加一些限制条件以回避悖论的出现。
44、集合论的创建者是康托尔(Cantor,1845-1918),当他29岁时,在《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章,此后,他从事集合与超限数方面的研究长达20多年。
45、庄朝晖,关于对角线方法和停机问题的评论,第五届两岸逻辑教学与研究学术会议,重庆西南大学,2012年4月.
46、M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。问,你来这里做什么?M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
47、 我们一起看看下面的经典悖论,进行一场头脑风暴吧!
48、1918年,罗素把这个悖论通俗化,称为“理发师悖论”:有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。
49、古希腊数学家芝诺提出关于运动的不可分性的哲学悖论被称为芝诺悖论,有个著名的例子。在阿喀琉斯和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。当阿喀琉斯追到100米时,乌龟已经又向前爬了10米,于是,一个新的起点产生了;阿喀琉斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已经向前爬了1米,阿喀琉斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自己之间制造出一个距离,不管这个距离有多小,但只要乌龟不停地奋力向前爬,阿喀琉斯就永远也追不上乌龟!
50、再比如定义f(x)=1ifx>0;f(x)=-1ifx那个这个函数在x=0处是没有定义的。再展开一下。比如定义f(x)=1ifx>0;f(x)=f(x)ifx=0;f(x)=-1ifx同样,这个函数在x=0处是没有定义的。再展开一下。比如定义f(x)=1ifx>0;f(x)=f(x)+1ifx=0;f(x)=-1ifx同样,这个函数在x=0处是没有定义的。如果有人定义了这样一个函数,那么怎么办呢?因此要取消所有的f(x)的意义吗?不用啊,只需要在没有定义(缺少定义,重言定义,矛盾定义)的地方追加定义即可。这就是维氏的解决方案。
51、集合论为数学奠定了坚实的基础,许多概念不清的问题利用集合论得到了完美的解释。数学家希尔伯特度赞誉康托尔的集合论“是数学天才最优秀的作品”,“是人类纯粹智力活动的最高成就之一”。
52、一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。
53、最有趣的就是理发师悖论。在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
54、伽利略悖论。伽利略认为,正整数中,有些是偶数,有些不是。因此,他就猜测,正整数一定比偶数多。但是每一个正整数乘以2都能得到一个偶数,而每一个偶数除以2都能得到一个正整数,那么从无限的数看来,偶数和正整数都是一一对应的,那么,这就说明,在无穷大的世界里,部分可能等于全体。
55、牛也有KPI?每天准时定量吃草,目标吃遍整片牧场!
56、值得指出的是,希尔伯特所说的公理不是我们通常认为的公理,而是经过了彻底的形式化。他们存在于一门叫做元数学的分支中。元数学与一般数学理论的关系有点像计算机中应用程序和普通文件的关系。
57、我们经常始于某个直觉概念——关于某物是如何运作的——而后我们发现在自己的直觉中,存在某些奇怪和自相矛盾的东西,随后我们会想办法处理这种奇异性,并解决难题。
58、(1)如果A包括其自身,那么很好!A会满足“成为A的一个成员”的条件——包括其自身/自含。
59、 数学虽是一门严谨的科学,但也会存在许多矛盾,数学就是在解决矛盾中不断完善的。
60、其实,罗素主要是一个哲学家、逻辑学家、教育学家和文学家,并且获得了诺贝尔文学奖。但是罗素为什么要提出这个数学悖论呢?
61、但是,从集合论诞生的那一天起,针对集合论的诘难和各种悖论的出现就从没有停止过。尤其以1902年罗素悖论最为有名。数学家们只享受了集合论带来的短暂的祥和,就又陷入了一种无法解决的危机之中,这就是第三次数学危机。
62、罗素悖论:这就是为什么数学不能拥有一个“所有事物”的集合
63、现实不是科幻小说,科学发展中出现的任何理论危机都意味着我们认识的不足,也激励着一代又一代的科学家们去探索、发现。因此,我们不必追求完美的理论,相反,真理的丧失、权威的崩塌才是学科发展前所未有的良机。
64、这是一个不可判定命题(undecidablepropersition):基于我们所知,无法证实或证伪任何一个选项。
65、尤其,这些公理立即禁止“一个集合成为其自身的一个成员”(即,自含集合)。
66、当前主流的解悖方案是蒯因的方案。蒯因的论证过程:假设村子里有如此一位理发师。如果他要给自己理发,根据他的规则,他不给自己理发。如果他不给自己理发,根据他的规则,他要给自己理发。矛盾。因此假设不成立,如此一位理发师不存在。
67、十九世纪下半叶,康托尔创立了著名的集合论。
68、 再比如欧几里得提出的说谎者悖论,他说“我正在说的这句话是谎话。”
69、悖论和悖论解是隐含在同一命题或表面推理中的两个对立的结论,二者都可以证明自己是正确的。悖论的抽象公式是:如果事件a发生,则推导出非a,推导出非a。
70、既然这个集合本身,很显然也不是一个自然数,因为它是一个“不是自然数的‘所有东西’的巨大聚集”,那么,它必然也是它自己这个集合的成员之一(即,它是一个自含集合)。
71、(2)“所有集合的集合”(注:此集合自身也是一个集合,所以它包括其自身)。
72、最古老的悖论是两千多年前的“说谎者悖论”,若你说它是假命题的话,就可推出它是真命题,反之亦然。其最简形式就是:
73、 如果强盗把商人杀了,就说明商人猜对了,这样就应该把商人放了;如果强盗把商人放了,商人就说错了,强盗应该杀掉他才对。
74、悖论的提出,促使许多数学家去研究集合论的无矛盾性问题,从而产生了数理逻辑的一个重要分支——公理集合论。
75、时间悖论最早是在科幻小说中提到的。这个悖论的必要前提是:人类可以随心所欲的控制三维空间之后的“第四维”——时间,能够回到过去或者将来。在这个前提下,有多种“时间悖论”的表达方式。
76、现代集合论的诸种公理,非常具体地规定了如何建立“其他集合的集合”(setsofothersets)。
77、这就是一个典型的因自指而产生的悖论,也叫说谎者悖论。与之等价的还有一种表达: